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Abstract. Approximate near neighbor search plays a critical role in
various kinds of multimedia applications. The vocabulary-based hash-
ing scheme uses vocabularies, i.e. selected sets of feature points, to de-
fine a hash function family. The function family can be employed to
build an approximate near neighbor search index. The critical problem
in vocabulary-based hashing is the criteria of choosing vocabularies. This
paper proposes a approach to greedily choosing vocabularies via Ad-
aboost. An index quality criterion is designed for the AdaBoost approach
to adjust the weight of the training data. We also describe the parallelized
version of the index for large scale applications. The promising results
of the near-duplicate image detection experiments show the efficiency of
the new vocabulary construction algorithm and desired qualities of the
parallelized vocabulary-based hashing for large scale applications.

1 Introduction

Approximate nearest neighbor search plays a critical role in various kinds of
multimedia applications, including object recognition [13], near-duplicate im-
age detection [10], content-based copy detection [11,16]. In such applications,
typically, the multimedia objects are represented as sets of elements (e.g., local
feature points), between which the similarity can be evaluated via searching the
nearest neighbors of each element.

The recent explosion of multimedia data has led the research interest into
large scale multimedia scene. The various typical approximate near neighbor
search algorithms, such as ANN [4] and LSH[5,8], show high performance in
relatively small datasets, but do not fit in the large scale scene. For example,
the popular Euclidean locality sensitive hashing based on p-stable distributions
(E2LSH)[5] typically requires hundreds of bytes for each point. Also, instead
of all points in the buckets, it performs a refinement step to return only those
within a distance threshold, which requires loaded data in the memory. These
shortcomings prevent it from usage in large datasets.

The bag-of-features (BOF) image representation [17] is introduced in this
context. Each feature point in the dataset is quantized by mapping to the ID
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of the nearest one in a selected set of feature points called a visual vocabulary.
The vector quantization approach can be interpreted as an approximate near
neighbor search: the space is partitioned into Voronoi cells by the vocabulary,
and points are treated as neighbors of each other if they lie in the same cell. The
BOF approach can deal with large scale datasets for its efficient and space-saving
property. However, it is an approximation to the direct matching of individual
feature points and somewhat decreases the performance [10].

The vocabulary-based hashing scheme [12] combines the merits of BOF and
LSH. Vocabularies are employed to define a hash function family in which each
function maps an input point to the ID of the nearest one in the corresponding
vocabulary. The function family is incorporated into the locality sensitive hash-
ing scheme in [9] to build an index for approximate near neighbor search. This
approach shows better performance than BOF and LSH, and it is efficient for
large databases. In this vocabulary-based hashing scheme, the vocabularies de-
fine the hashing functions and thus determine the index, so they play a key role
and should be carefully designed. The vocabulary construction algorithm in [12]
first generates random vocabularies and then selects from them according to two
criteria. However, it is time-consuming since it must generate a large amount of
random vocabularies to select effective vocabularies.

In this paper, a new approach utilizing AdaBoost [7] is proposed for the vo-
cabulary construction in vocabulary-based hashing. An index quality criterion is
designed for AdaBoost to adjust the weight of the training data. We also describe
the parallelized version of the index for large scale applications. Near-duplicate
image detection experiments are carried out to demonstrate the effectiveness and
efficiency of the approach. The results show that the new vocabulary construc-
tion algorithm is significantly more efficient than that in [12], and the parallelized
vocabulary-based hashing shows desired qualities for the large scale scene.

This paper is organized as follows. The vocabulary-based hashing index is
briefly reminded in Section 2. Section 3 presents the proposed vocabulary con-
struction algorithm and Section 4 describes the parallelization. Experimental
results are provided in Section 5. Section 6 concludes the paper.

2 Vocabulary-Based Hashing

In this section we briefly describe the vocabulary-based hashing scheme proposed
in [12].

Denote a hash function family mapping a domain S into U as H = {h : S →
U}. [12] propose to use feature point vocabularies to define hash functions by
partitioning the space into Voronoi cells. Formally, A hash function h ∈ H is
defined as

h(q) = arg min
0≤i<t

D(q, wi
h), wi

h ∈ Vh

where
Vh = {wi

h, 0 ≤ i < t}
is a vocabulary associated with h, t is the size of the vocabulary and D(q, w) is
the Euclidean distance between points q and w.
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Here we remind the hashing index scheme using a given function family [9].
First for a given parameter k, define a function family G = {g : S → Uk} such
that g(p) = (h1(p), . . . , hk(p)), where hi ∈ H. Then for a given parameter L,
choose L functions g1, . . . , gL from G. During the construction of the index, each
data point p is stored in the buckets gj(p), for j = 1, . . . , L. To find neighbors
for a query point q, search all buckets g1(q), . . . , gL(q) and return all the points
encountered. Thus, the functions g1, . . . , gL define a hashing index and different
hashing function family H leads to different index. The vocabulary-based hashing
index is constructed by employing the vocabulary-based hash functions. For sim-
plicity, we call Vg = (Vh1 , . . . , Vhk

) a vocabulary associated with g = (h1, . . . , hk)
and let V = (Vg1 , . . . , VgL).

3 Vocabulary Construction

As mentioned above, the vocabularies play a key role in the scheme. The ba-
sic idea for the vocabulary construction in [12] is to select vocabularies of best
quality from randomly generated ones. It is time-consuming because sufficient
amount of random vocabularies are required for selection. We propose an algo-
rithm that utilizes AdaBoost [7] to speed up the construction. The AdaBoost
approach needs a criterion for representing the quality of a point being indexed
to adjust the weight of the training data. So the first subsection focus on design-
ing the criterion. Then we describe the vocabulary construction algorithm and
provide an analysis of the AdaBoost approach in this context.

3.1 Index Quality Criterion

As noted in [12,10], a high-quality search index should return ground truth points
and filter noise points with high probability at the same time. For example, in
the typical application of similar image search, the retrieved neighbors are used
for voting. Here the true positive neighbors can be regarded as useful information
while the false positive neighbors bring noise into the voting. Thus we define the
index quality of a point to be the signal/noise ratio of the returned neighbors if
the point is used as a query. Formally, denote the dataset as P . Suppose p and
q are near neighbors if D(p, q)<R. Let

TPg(q) = {p : g(p) = g(q), D(p, q) < R}
T (q) = {p : D(p, q) < R}

Pg(q) = {p : g(p) = g(q)}.
Assume there is only one true positive neighbor. Its possibility of being returned
is |TPg(q)|/|T (q)|, which can be used as the measure for information brought in.
Further assume the weight of the noise brought in by one returned neighbor is
w. We define the index quality of q in g to be

v̂g(q) =
|TPg(q)|/|T (q)| + 1

w|Pg(q)| + 1
(1)



548 Y. Liang, J. Li, and B. Zhang

where | · | is the number of points in the set. Note that better designs are possible
but left for future work.

Here we discuss the setting of w in detail. We simplify the analysis by making
the following assumptions. First, the noise brought in by n returned neighbors
will counteract the useful information brought in by true neighbors and thus
w=1/n. Second, the data points come from No multimedia objects (e.g., images
or videos) and the returned neighbors scatter among these objects uniformly
and independently. Then if two or more of the n returned points belong to the
same object, the information of the true neighbors will be counteracted. Thus,
we expect that the n noisy points belong to different multimedia objects with
high probability: ∏n−1

i=1 (No − i)
Nn−1

o

> 1 − ε.

Since ln(1 + x) ≈ x with small x, approximately we have,

n−1∑
i=1

( i

No

)
< ε.

Setting ε=0.05, we have

w =
1
n
≈

√
10
No

. (2)

The formula (1) and (2) define the criterion v̂g(p). We tune it to fit the AdaBoost
scheme as follows: if v̂g(p) is among the smallest |P|/10 ones, then vg(p)=−1,
indicating that p is not well-indexed in g and needs more emphasis; otherwise,
vg(p)=1. Formally,

Ig(p, q) =
{

1 if v̂g(p) > v̂g(q)
0 otherwise (3)

vg(p) =
{−1 if

∑
q∈P Ig(p, q) < |P|/10

1 otherwise
(4)

3.2 AdaBoost for Vocabulary Construction

Now we have the criterion vg(p) describing the quality of a point p indexed
in the hash table g and thus can utilize AdaBoost in vocabulary construction.
During the construction of V = (Vg1 , . . . , VgL), we compute {vgi(p), p ∈ P}
after Vgi is constructed. Then the weights of the points are adjusted accordingly,
emphasizing points with low index quality in the construction of Vgi+1 .

The algorithm is described in ConstructVocabulary(P , t, k, L, C): P is the
training dataset; W is the weight for points in P ; t, k and L are index parameters;
C is a parameter indicating the number of repetitions, typically C =10.

We first briefly analyze the AdaBoost approach in the context of vocabulary
construction, which is analogous to that in the classification context. During the



Learning Vocabulary-Based Hashing with AdaBoost 549

Procedure. ConstructVocabulary(P , t, k, L, C)
1 For each p ∈ P , assign the weight W1(p) = 1/|P|
2 For i=1 to L

1) Vgi = ConstructVg(P ,Wi, t, k, C)

2) Compute {vgi (p), p ∈ P}
3) αi= ComputeAlpha(Wi, vgi)

4) For each p ∈ P , Wi+1(p) = Wi(p) exp{−αivgi(p)}
5) Zi =

∑
p∈P Wi+1(p)

6) For each p ∈ P , Wi+1(p) = Wi+1(p)/Zi

3 Return V = (Vg1 , . . . , VgL)

analysis, we specify the subprocedures ConstructVg and ComputeAlpha.
Let N = |P|, vi(p)=vgi(p). We have

WL+1(p) = WL(p)
exp{−αLvL(p)}

ZL

= W1(p)
exp{−∑L

j=1 αjvj(p)}∏L
j=1 Zj

=
exp{−∑L

j=1 αjvj(p)}
N

∏L
j=1 Zj

.

As
∑

p∈P WL+1(p) = 1,

L∏
j=1

Zj =
1
N

∑
p∈P

exp
{
−

L∑
j=1

αjvj(p)
}

≥ 1
N

∑
p∈P

(
1 −

L∑
j=1

αjvj(p)
)

= 1 − 1
N

L∑
j=1

αj

∑
p∈P

vj(p).

Assume that the query shares the same distribution with the dataset, which
leads to E

[
vj(q)

] ≈ 1
N

∑
p∈P vj(p), then

L∏
j=1

Zj ≥ 1 −
L∑

j=1

αj
1
N

∑
p∈P

vj(p)

≈ 1 −
L∑

j=1

αjE
[
vj(q)

]
.
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Thus, 1−∏L
j=1 Zj serves as a lower bound for

∑L
j=1 αjE

[
vj(q)

]
, which indicates

the quality of the index defined by g1, ..., gL. So we turn to minimize
∏L

j=1 Zj .
A greedy approach is adopted, i.e. incrementally minimize Zj from j = 1 to L.
So the problem becomes

(gj , αj)∗ = arg min
g,α

∑
p∈P

Wj(p) exp{−αvg(p)}

We greedily select gj and then optimize αj . An approximate solution of gj will
be

gj = arg max
g

∑
p∈P

Wj(p)vg(p)

which leads to the following ConstructVg.

Subprocedure. ConstructVg(P ,W , t, k, C)
1 Compute the mean m of P and its bounding box B, i.e. the minimum and

maximum value in each dimension
2 For i=1 to C, j =1 to k

Draw t random points pi
j,s(0≤s<t) within B uniformly and independently

3 Centralize to

wi
j,s = pi

j,s − 1

t

t−1∑
s=0

pi
j,s + m

4 Let
V i

hj
= {wi

j,s}, V i
g = (V i

h1 , . . . , V i
hk

)

5 Return V i
g that maximizes

∑
p∈P W(p)vg(p)

The objective Zj becomes a function of α. It has nice analytical properties,
and many algorithms exist for the optimization. We use Newton’s algorithm in
ComputeAlpha. During the experiments, we observe that setting the param-
eter T=20 will be sufficient for the procedure to converge.

Subprocedure. ComputeAlpha(W , vg)

1 α(0) = 1.0
2 For i = 1 to T

α(i) = α(i−1) +

∑
p∈P W(p)vg(p) exp{−α(i−1)vg(p)}∑
p∈P W(p)v2

g(p) exp{−α(i−1)vg(p)}

3 Return α(T )



Learning Vocabulary-Based Hashing with AdaBoost 551

3.3 Implementation for Large Datasets

As in [12], we adopt a hierarchical approach for large datasets: the dataset is
partitioned into t1 subsets and vocabulary construction is performed for each
subset. More specifically, during the vocabulary construction step, the dataset
P is first clustered into t1 points, which form the first level vocabulary V̂ =
{ŵi, 0 ≤ i < t1} for all h ∈ H. Then we hash points on V̂ and each bucket forms a
subset Pi. The algorithm ConstructVocabulary uses each Pi as input dataset
to construct vocabularies Vi = (Vi,g1 , . . . , Vi,gL), Vi,g = (Vi,h1 , . . . , Vi,hk

), Vi,h =
{ws

i,h, 0 ≤ s < t2}, which form the second level. During the search step, we hash
the query point on V̂ , find which Pi it falls in, and use Vi to find its approximate
near neighbors.

4 Parallelization

The vocabulary-based hashing can be parallelized naturally for the tables work in
parallel. The parallelized version of the index is illustrated in Figure 1(L=2)[12].
The query is sent to each table and further forwarded to the corresponding
bucket. Points in those buckets are then returned. The search time in vocabulary-
based hashing consists of two parts: hashing on the first level V̂ needs O(t1) if
brute-force search is adopted; hashing on Vi needs O(t2kL). After parallelization
the second part of the search time is reduced to O(t2k). Also, each table can hold
more points and thus the index can deal with larger datasets. Additionally, a
single table can be further split into two or more tables which still work in parallel
and thus can be deployed on machines without large memory. Our experiments
in the next section show its benefits.

Query

1g

2g

...

...

...

...

Fig. 1. Parallelized vocabulary-based hashing[12]
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5 Experiments

5.1 Settings

We evaluate our index scheme in the typical application of near-duplicate im-
age detection. The experiments are carried out on a Intel(R) Xeon(R) machine
with 16GB of memory. The parallelized index is also distributed on other ma-
chines with Intel(R) Pentium(R) 4 CPU and 4G memory. The algorithms are
implemented in C++.

Fig. 2. Examples of near duplicates. From left to right, first row: original, change
gamma to 0.5, crop 70%; second row: scale down by 5 times, frame, rotate 90◦.

Datasets. We construct the vocabularies on Flickr60k and evaluate on the
Holidays and Flickr1M datasets [10,2]. The Holidays (1491 images) is di-
vided into 500 groups, each of which represents a distinct scene or object. The
Flickr60k (67714 images) and Flickr1M (1 million images) are two distinct
datasets downloaded arbitrarily from Flickr[1].

For vocabulary construction, we use a dataset Flickr60k distinct from the
testbed, in order to show more accurately the behavior in large scale scenes,
where the dataset itself is too large, or it is updated incrementally so that we
do not have the entire dataset at hand for the construction.

For evaluation, we construct the testbed similar to the web scale context from
Holidays and Flickr1M . The first image of each group in Holidays is selected to
form the query set. Transforms are applied to each query image and the generated
duplicates are added into the Flickr1M to form the test dataset. The transforms
are similar to those in [11,14], and are implemented using ImageMagick[3]. They
are listed below and the number in brackets next to each operation denotes the
number of near-duplicate images generated.

SIFT [13] descriptors extracted from the images by the software in [2] are
used in the experiments.
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1. Exact duplicate [1].
2. Changing contrast [2]: (a) change contrast with default parameters in Im-

ageMagick; (b) increase constrast by 3x.
3. Changing intensity [2]: intensity (a) decreased by 50%; (b) increased by 50%.
4. Changing gamma [2]: change gamma to (a) 0.5 or (b) 2.0.
5. Cropping [3]: crop the image by (a) 10% or (b) 50% or (c) 70%, preserving

the center region.
6. Framing [1]: Add an outer frame to the image, where the size of the frame

is 10% of the framed image.
7. Scaling [2]: scale the image down by (a) 2 or (b) 5 times.
8. Rotating [2]: Rotate image by (a) 90◦, (b) 180◦.
9. Inserting text [1]: insert the text at the center of the image.

10. Changing format [1]: change the image format JPEG to GIF.

Evaluation Measure. To evaluate the performance of the index, the near
neighbor retrieved from the index are used to perform a vote on the images as
in [10]. Note that in practice there is usually a post-verification step of the top
n positions, especially in large scale scenes where the voting results need further
refinements. So rate of true positives returned in the top n positions after voting
(perf@n) serves as a suitable performance measure [15,10,6,12]. As there are 17
duplicate images, we choose perf@20 for our evaluation.

5.2 Results
Effectiveness. Figure 3 shows the effectiveness of the index while evaluat-
ing on the test data subsets of different sizes. VBH Ada is the proposed ap-
proach with the index parameters t1 = 20000, t2 = 2, k = 8, L = 8. BOF is the
bag-of-features approach with a codebook size of 20000. VBH Ada outperforms
BOF and shows better scalability since it is a refinement of BOF. VBH Rs
and VBH Rn are vocabulary-based hashing with the same index parameters as
VBH Ada. VBH Rs employs the construction approach in [12], generating 100
random vocabularies. VBH Rn uses random vocabularies with words drawn from
the bounding box of the dataset uniformly and independently at random. The
better performance and scalability of VBH Ada and VBH Rs indicates that the
construction algorithms do contribute to the effectiveness of the index.

0 100k 200k 300k 400k 500k 600k 700k 800k 900k 1M
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Fig. 3. Effectiveness
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Parameters. Figure 4 shows the performance of vocabulary-based hashing on
the 1M dataset with different index parameters t1, t2, k, L. All the settings use
t1 =20000, and txky means t2 =x, k = y. Indexes with similar number tk2 shows
similar performance and larger number leads to better results for larger tk2 in-
dicates finer partition of the feature space. Also the performance increase with
table number L.

Time. The vocabulary construction time for the approach in [12] and our pro-
posed approach is presented in table 1. Both approaches are applied on Flickr60k
to construct vocabularies with index parameters t1 =20000, t2 =2, k=8, L=16.
The approach in [12] generates 100 random vocabularies for selection. The pro-
posed approach consumes significantly less time since the AdaBoost method
avoids the need for generating a large amount of random vocabularies. This
makes it more practical in the large scale scene.

Table 1. Vocabulary construction time

Method Time

[12] 154hr
proposed 21hr

Table 2. Feature extraction and search
time per query (Flickr1M dataset)

Method Feature extraction Search

serial VBH 0.51s 8.97s
parallelized VBH 0.51s 1.27s

BOF 0.51s 9.16s

The search time for a query in the near-duplicate detection task is presented in
table 2. Although the vocabulary-based hashing approach does more computa-
tion while searching the near neighbor, it filters out much more noisy points than
BOF, thus the total query time does not increase. Further, after parallelization,
the approach consumes much less time than the serial version.

Space. The dataset consists of 2072M SIFT descriptors, which occupy a space
of 323G. They are impractical to load into memory and thus can not be indexed
by some typical structures like E2LSH. Our index keeps only one integer for one
point in each table, so each table occupies 8G space. And the parallelized version
can be deployed across typical PCs without large amount of memory. If global
descriptors are used, such as GISTIS[6], two orders of magnitude more images
can be handled, approaching to web scale applications.

6 Conclusion

This paper proposed a new vocabulary construction algorithm for vocabulary-
based hashing index. Experiment results show its efficiency which makes it more
practical for large scale applications. We also described the parallelized version
of the index scheme. Near-duplicate image detection experiments on a dataset
with 1M images show its effectiveness and efficiency in the large scale scene.
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